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Abstract. Currently, Deep Learning (DL) models for performing Ma-
chine Comprehension are very focused on Interaction Encoders, which
are mostly based on attention mechanisms. DL models for encoding
context, usually include pre-trained features into the initial embeddings,
such as: Part-of-Speech, Named Entity Recognition, Term Frequency,
etc. In this paper, we propose to use a fine-grained gating mechanism
that controls the flow of information from the Context Encoder towards
the Interaction Encoder. This gate is based on the Question-summary
and the input vector at some time step. This simple structure has been
shown to improve the performance of a given baseline model. Our model
achieved 68.70% of exact match and 78.25% of F1 measure, on the
Stanford question answering benchmark.

Keywords: machine comprehension, question answering, natural lan-
guage processing, deep learning.

1 Introduction

Reading comprehension is defined as the ability to read text, process it, under-
stand its meaning and then be able to answer any questions about it [4]. When
machines perform this task it is called Machine Comprehension (MC). Although
this definition may seem simple, this is a challenging task for machines.

Datasets have become very important in recent MC progress [5,15,16]. The
predominant annotation style involves selecting a text segment from a Document
to answer a Question posed in natural language. An example extracted from
Stanford Question Answering Dataset (SQuAD) [15] is presented in Table 1.

SQuAD offers more realistic information and poses a greater challenge, due
to many of the questions require commonsense reasoning and multi-sentence
reasoning. Consider the question ”Why did Tesla go to Karlovac?”, presented in
Table 1. This question requires multi-sentence reasoning.

Nowadays, MC models powered by Deep Learning (DL) become the state-
of-the-art [7,13,23]. These models are basically composed by three modules: The
first one is the Context Encoder that is responsible for encoding the words of
the Document and the Question according to their surrounding words. The
Interaction Encoder encodes the interaction between the Document and the
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Table 1. Question-Answer pairs extracted from SQuAD. Each answer is a text span
selected from the paragraph.

Nikola Tesla

In 1870, Tesla moved to Karlovac, to attend school at the Higher Real
Gymnasium, where he was profoundly influenced by a math teacher Martin
Sekulic. The classes were held in German, as it was a school within the
Austro-Hungarian Military Frontier. Tesla was able to perform integral calculus in
his head, which prompted his teachers to believe that he was cheating. He finished a
four-year term in three years, graduating in 1873.

In what language were the classes given? German
Who was Tesla’s main influence in Karlovac? Martin Sekulic
Why did Tesla go to Karlovac? attend school at the Higher

Real Gymnasium

Question. Finally, the Answer Decoder extracts the answer to the Question
based on the previous encoding. Our proposal follows this approach. However,
unlike most of MC works, which aim at improving the Interaction Encoder using
attention, we seek to improve the Context Encoder instead.

In order to do so, we first transform words to their corresponding word
embeddings. So as to feed them to a deep neural network, which can be some
type of Recurrent Neural Network (RNN) [11] or Convolutional Neural Network
(CNN) [9] , or a structured set of these. In such a way that the output is the
encoding of each word with respect to its current context [27,29,12]. The context
encoding of the Document and Question are mostly independently generated,
although the same Context Encoder is for both shared.

Related works on Context Encoder, frequently add new features to the em-
beddings, such as: Part-of-Speech (POS), Named Entity Recognition (NER),
Term Frequency (TF), etc. [1,12,25,29]. Conversely, we propose to include a
simple structure called fine-grained gate based on Question-summary. The main
idea is to regulate the flow of contextual information from the Document en-
coding towards the Interaction Encoder. Thus, when encoding the attention, we
favor words that are the most relevant to answer the Question.

This simple structure has been shown to improve the performance regarding
a given baseline model. Our model achieved 68.70 of Exact Match (EM) and
78.25 of F1 measure, on the SQuAD [15].

The remainder of this paper is organized as follows. In Section 2 the problem
is formally defined and Section 3 presents a common pipeline shared by previous
works. Section 4 reviews related work. Section 5 describes the proposed model.
Section 6 presets experiments and results. Finally, Section 7 concludes the paper.

64

Christian Mayhua Tijera, José Ochoa-Luna

Research in Computing Science 147(10), 2018 ISSN 1870-4069



2 Machine Comprehension

In order to define the MC task considered in this work, we follow the SQuAD
syntax. A Document (paragraph) and a Question are given as inputs. The
Document is a sequence of m words (p1, p2, ..., pm) and a Question is another
sequence of n words (q1, q2, ..., qn). The output is a set {as, ae}, where 1 ≤
as ≤ ae ≤ m and as, ae are the boundaries of the answer span, this means
that (pas , pas+1, ..., pae) is the answer extracted from the Document sequence.
An example taken from SQuAD [15] can be seen in Table 1.

3 Deep Learning Pipeline

To tackle this task, one can adopt a generic pipeline [7,17,23]. In this setting,
current DL models are composed by three modules: context encoder, interaction
encoder and answer decoder.

3.1 Context Encoder

The Context Encoder is responsible for encoding words according to their current
context, their surrounding words. The first step is to transform the words to
their corresponding word embeddings [14]. Then, these embeddings are fed to
a deep neural network, generally some kind of RNN, among the most used are:
Long Short Term Memory (LSTM) [6] and Gated Recurrent Unit (GRU) [2].
The output of these RNNs is the encoding of each word according its current
context.

3.2 Interaction Encoder

The Interaction Encoder merges the encoding context from the Document and
the Question. Frequently, an attention mechanism is used to encode the inter-
action between the Question and the Document [3,17,26]. The attention can be
given in only one direction, so as to focus the attention in parts of the Document
according to the Question, or in both directions. Recently, self-attention is used
as a second step of reasoning [23]. Thus, attention is focused on parts of the
previous interaction encoding based on itself.

3.3 Answer Decoder

Finally, the Answer Decoder extracts a piece of text from the Document to
answer the Question. To do so, pointer networks [21] are generally used. They
have the ability to learn the conditional probability of a sequence based on
another, this allow us to point to a position in the sequence. Usually two pointer
networks are used to determine the boundaries of the answer given the interaction
encoding [8,22,26].
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4 Related Work

Related work regarding the Context Encoder are scarce. Most of the works have
focused on improving the Interaction Encoder [7,17,23,24,26,28].

A vast majority of models included GloVe [14] as word embeddings and
character-level embeddings based on CNN [9] or RNN [23]. Some models included
another word features as inputs (e.g. POS, NER, TF). This simple pre-trained
features added to initial embeddings improved the models [7,13,18].

Yang et al. [27] proposed a fine-grained gating mechanism to dynamically
combine word and character-level embeddings based on properties of the words
and additional features (POS, NER and TF). Their results showed to improve
several Natural Language Processing (NLP) tasks. Our work proposes a similar
gating approach but our gating mechanism is based on Question-summary and
current Document input.

FastQA [25] introduced a simple context/type matching heuristic, which is
based on the first word of the Question. They added two features directly in the
embeddings, called word-in-question. jNet [29] introduced syntactic information
to help to encode questions, due to there are several types of questions. jNet
proposed an adaptive model for representing syntactic knowledge. Document
Reader [1] included three simple binary features based on exact match metric.

Liu et al. [12] proposed to use structured linguistic information such as:
constituency trees and dependency trees. We found that this model can perform
especially well on exact match metrics, which requires syntactic information to
accurately locate boundaries of answers.

5 The Model

In this section, we describe the proposed structure called fine-grained gate based
on Question-summary which is included in the pipeline depicted in Figure 1.

First, we propose a Context Encoder that seeks the interaction between the
Document and the Question in early stages. This Context Encoder consists of
a gating mechanism that regulates the flow of information from the Document.
Then, we define the attention based Interaction Encoder, which focuses on a
subset of the Document where the answer is located. Finally, the Answer Decoder
is responsible for predicting the beginning and the ending index of the answer
inside the Document.

Further details about these stages are given as follows.

5.1 Context Encoder

The aim of this encoder is to transform sequences of words—Document and
Question—into knowledge represented through sequences of vectors (knowledge
representation). These vectors can be further used by layers that extract higher
level knowledge, in order to answer the Question.
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Fig. 1. DL model overview. The information flows from bottom to top. Below we have
the Context Encoder, constituted by: Document Encoder and Question Encoder. In the
central part is the Interaction Encoder, and finally up we have the Answer Decoder.

Word Embedding Layer. The word embedding layer maps each word to a
high-dimensional vector space. We use pre-trained word vectors—GloVe [14]—to

obtain the fixed word embedding of each word. Let (xQw
1 , xQw

2 , ..., xQw
n ) be a

vector which denotes the sequence of word vectors corresponding to words in the
Question and (xPw

1 , xPw
2 , ..., xPw

m ) denote the same for words in the Document.

Character Embedding Layer. The character embedding layer is responsible
for mapping each word to a high-dimensional vector space. Let (xPc

1 , xPc
2 , ..., xPc

m )

denote the Document words and (xQc
1 , xQc

2 , ..., xQc
n ) denote the words in the

Question. The character embeddings are generated using CNNs, following the
proposed by Seo et al. [17], which is based on Kim’s work [9].

Question Encoder. The input Question embedding is obtained by concatenat-
ing the character and word embeddings, which are fed to a two-layer Highway
Network [20]. This input Question representation is denoted by (xQ1 , x

Q
2 , ..., x

Q
n ).

Then, a bi-directional RNN computes the Question encoding. In forward di-
rection qft = RNNforward(qft−1, x

Q
t ) generates a matrix Qf = [qf1 , q

f
2 , ..., q

f
n] ∈

Rd×n. Similarly, we compute in backward direction qbt = RNNbackward(qbt+1, x
Q
t )

generating Qb = [qb1, q
b
2, ..., q

b
n] ∈Rd×n. These vectors are concatenated so as to

obtain a Question encoding Q = [q1, q2, ..., qn] ∈R2d×n.

In order to summarize the Question, we concatenate the last hidden state of
the forward and backward RNNs. This Question summary is represented by the
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following equation.
q = [qfn; qb1], (1)

where (;) denotes concatenation. This summarized Question is the input for the
proposed gate in the Document Encoder.

Document Encoder. Similarly to the Question Encoder, the Document En-
coder relies on the concatenation of word and character embeddings, which are
fed to a two-layer Highway Network [20], obtaining (xP1 , x

P
2 , ..., x

P
m). Next, we

use a bi-directional RNN to encode the Document embedding. For simplicity we
denote the RNN in both directions as p̄t = Bi−RNN(p̄t−1, p̄t+1, x

P
t ), in order

to obtain the Document encoding P̄ = [p̄1, p̄2, ..., p̄m] ∈R2d×m.
Then, we propose a second processing branch based on a fine-grained gate,

which allows us to regulate information flow from Document representation.
Thus, we favor the relevant information to answer the Question before using
attention. This gate is described in equation 2.

gt = σ(Wg · [xPt ; q] + bg), (2)

where Wg, bg are trainable parameters, q is the Question-summary, xPt is the
current Document embedding and σ is the Sigmoid function. We apply the gate
to each dimension of the previous Document embedding. Thus, we obtain its
gated Document embeddings.

x̂Pt = gt ◦ xPt , (3)

where ◦ is element-wise product. Similarly to Question Encoder, we use another
a bi-directional RNN to encode the gated Document embedding, as follows:
p̂t = Bi−RNN(p̂t−1, p̂t+1, x̂

P
t ). In order to obtain its gated Document encoding

P̂ = [p̂1, p̂2, ..., p̂m] ∈ R2d×m. Finally, we fuse Document encoding and gated
Document encoding, which is defined in equation 4.

pt = p̄t × p̂t, (4)

where (×) is an element-wise fuse operation. The element-wise product gave us
better results. For simplicity, we denote the output of this Document Encoder

as P = [p1, p2, ..., pm] ∈R2d×m.

5.2 Interaction Encoder

In this layer we encode the interaction between the Document and the Ques-
tion. First, we use an attention mechanism, in this case we choose to use a
Bi-Directional Attention Flow (BiDAF) layer [17]. This layer is defined as a
function that fuses contextual information of Document P and Question Q to
encode attention C.

C = Bi−Attention(P,Q). (5)
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The next step is the fusion of temporal information to the attention encoding
so as to get attention modeling. We feed a two-layer of bidirectional RNN with

C, to obtain a matrix M ∈ R2d×m. This allows us to provide an interaction
representation of the Document and the Question. This interaction encoding
feeds the Answer Decoder.

5.3 Answer Decoder

We use the output layer of the BiDAF model [17]. This allows us to predict
beginning and ending positions of the span [22]. Pointer networks are used [21]
to do so. The answer decoder returns as, ae that denotes the boundaries of the
answer span over the Interaction encoding M .

as = Answer −Decoder1(M), (6)

ae = Answer −Decoder2(M). (7)

6 Results

This section presents results related to the gating mechanisms included into the
Context Encoder. Tests were made with several gate variations. In this case, only
models that improved the reported baseline results are shown, refer to Table 2.

6.1 Implementation Details

We train and evaluate the different models using SQuAD [15], a dataset for
MC that contains about 100K question-answer pairs. In order to answer the
Question, the aim is to extract a text span from a paragraph extracted from
Wikipedia articles. For evaluating, SQuAD uses two metrics: Exact Match and
F1 measure. We divide this dataset in 90K and 10K tuples for train and dev
respectively.

Our baseline model is BiDAF [17]. We tokenize each Document and Question
using PTB Tokenizer in order to feed the model. All RNNs are LSTM [6] whose
hidden state size is 100. We use Adam [10] optimizer, with default parameters,
an initial learning rate of 0.001, exponential decay rate of 0.999 and dropout [19]
rate of 0.2, for 12 epochs, with a mini-batch size of 60. The training process took
between 18 and 24 hours on a single Tesla K80 GPU in the Manati cluster1.

6.2 Experiments

We conveniently group the experiments in three sets. The first set presents
simple variations into the Context Encoder of the baseline model. The second
set denotes positional variations of the gating mechanism in the Document

1 Manati is a cluster located in Center for High Computational Performance of the
Peruvian Amazon. http://iiap.org.pe/web/carcap.aspx
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Encoder pipeline. In the third set, we introduce a parallel processing branch
into the Document Encoder, with the aim of using both parallel Document
representations in the following layers.

In the first set, we removed the 2-layer Highway network included into the
baseline Document Encoder (Dhighway). We removed it from Question Encoder
(Qhighway) and it was also removed from both at the same time. Table 2 shows
that only removing Dhighway from the Document Encoder pipeline (not from the
Question Encoder) presented the better results for this set. Apparently, Qhighway

compensates the difference of lengths between Document and Question, when
both are computed by the shared-weights LSTM. Given that the sequence of the
Document is much longer than the Question.

In the second set, we introduced the fine-grained gating mechanism into the
Document Encoder. We put the gate in four different position: before Dhighway,
replacing Dhighway, after Dhighway and after DLSTM . Where DLSTM represents
the LSTM of the Document Encoder. In Table 2, the best results arose when
we added the gate after DLSTM . We concluded that the gating mechanism
successfully controlled the flow of information from Context Encoder towards
Interaction Encoder, highlighting correctly Document words relevant to the
Question.

In the third set, we introduced a parallel processing branch composed by: a
gating mechanism and another LSTM. The LSTM encodes the gated embeddings
produced by the gate over Document embeddings. At this step, we have two
different Document representations from two different LSTMs. The next step is
to fuse both Document representations. In order to feed the Interaction Encoder,
we proposed three fussing operations: element-wise addition (+), element-wise
product (◦) and concatenation (;). In Table 2, element-wise product (◦) gave us
better results. This is because it also behaves like a kind of second fine-grained
gate, i.e., it also regulates the flow of information from the Document Encoder
towards the Interaction Encoder.

Table 2. Results on SQuAD development set.

Model (Single) EM F1

BiDAF [17] 67.70 77.30
SEDT-LSTM [12] 68.13 77.58
Our baseline implementation 68.14 77.61

−Qhighway−Dhighway 67.68 77.43
−Qhighway 68.12 77.45
−Dhighway 68.26 77.81

+Gate before Dhighway 68.03 77.63
+Gate instead Dhighway 68.20 77.65
+Gate after Dhighway 67.96 77.43
+Gate after DLSTM 68.34 77.68

+Gated branch, fused with (+) 68.31 77.76
+Gated branch, fused with (◦) 68.70 78.25
+Gated branch, fused with (;) 68.46 77.84
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Given the results showed in Table 2, our structure added into the baseline
Document Encoder has proven to improve the results by almost 1% in both
metrics, where element-wise product (◦) as fusing operation gave us the best
results across all models.

6.3 Statistical Significance Testing

We perform a Student’s t-test for proving that our improvement is statistically
significant. We use independent two-sample t-test over 10 samples with unequal
variances. We raise a null hypothesis H0 : there is no significance difference
between the mean of different samples.

We use the following decision criterion: if tscore ≤ α reject H0, else accept
H0, with an α = 0.05 significance value. Table 3 shows the tscore of our model
over our baseline implementation, both are less than α. Thus, we refuse the null
hypothesis. It means that the difference is statistically significant at 95%.

Table 3. Student’s t-test results on SQuAD development set.

Model (Single) EM tEM
score F1 tF1

score

Our baseline implementation 67.95 77.54
+Gated branch, fused with (×) 68.34 2.3 × 10−3 77.76 1.4 × 10−2

7 Conclusion

Nowadays, Machine Comprehension is mostly approached using Deep Learning.
The vast majority of these models focus on improving the Interaction Encoder
which is strongly based on a given attention mechanism. In contrast, less effort
has been spent to improve the Context Encoder. Thus, in this paper we have ex-
plored the Context Encoder. In this sense, we have proposed a gating mechanism
that allowed us to regulate the flow of information from the Document, which
is directly dependent on the Question. By doing so, we were able to highlight
words that were relevant to answer the Question.

Experiments were performed on a benchmark dataset, SQuAD. Reported
results were promising, the gating mechanism allowed us to outperform a given
baseline model. We obtained 68.70% of EM metric and 78.25% of F1 score.

Acknowledgments. This work was supported by grant 234-2015-FONDECYT
(Master Program) from Cienciactiva of the National Council for Science, Tech-
nology and Technological Innovation (CONCYTEC-PERU).

71

Fine-Grained Gating Based on Question-Summary for Machine Comprehension

Research in Computing Science 147(10), 2018ISSN 1870-4069



References

1. Chen, D., Fisch, A., Weston, J., Bordes, A.: Reading wikipedia to answer open-
domain questions. In: Proceedings of the 55th Annual Meeting of the Association
for Computational Linguistics. vol. 1 (Long Papers), pp. 1870–1879 (2017)

2. Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk,
H., Bengio, Y.: Learning phrase representations using rnn encoder–decoder
for statistical machine translation. In: Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing. pp. 1724–1734. Association
for Computational Linguistics (2014)

3. Dhingra, B., Liu, H., Yang, Z., Cohen, W., Salakhutdinov, R.: Gated-attention
readers for text comprehension. In: Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics. vol. 1 (Long Papers), pp. 1832–1846.
Association for Computational Linguistics (2017)

4. Grabe, W.: Reading in a Second Language: Moving from Theory to Practice.
Cambridge Applied Linguistics, Cambridge University Press (2009)
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